Extracted from:

Distributed Services with Go

Your Guide to Reliable, Scalable, and Maintainable Systems

This PDF file contains pages extracted from Distributed Services with Go, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
Oogrammers

Distributed

Services with Go

Your Guide to Reliable, Scalable,
and Maintainable Systems

Travis Jeffery

edited by Dawn Schanafelt and Katharine Dvorak

Distributed Services with Go

Your Guide to Reliable, Scalable, and Maintainable Systems

Travis Jeffery

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron

Development Editor: Dawn Schanafelt and Katharine Dvorak
Copy Editor: L. Sakhi MacMillan

Indexing: Potomac Indexing, LLC

Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-760-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 2

Structure Data with Protocol Buffers

When building distributed services, you're communicating between the services
over a network. To send data (such as your structs) over a network, you need
to encode the data in a format to transmit, and lots of programmers choose
JSON. When you're building public APIs or you're creating a project where
you don't control the clients, JSON makes sense because it’s accessible—both
for humans to read and computers to parse. But when you're building private
APIs or building projects where you do control the clients, you can make use
of a mechanism for structuring and transmitting data that—compared to
JSON—makes you more productive and helps you create services that are
faster, have more features, and have fewer bugs.

So what is this mechanism? Protocol buffers (also known as protobuf), which
is Google’s language and platform-neutral extensible mechanism for structur-
ing and serializing data. The advantages of using protobuf are that it:

e Guarantees type-safety;

¢ Prevents schema-violations;

¢ Enables fast serialization; and
e Offers backward compatibility.

Protobuf lets you define how you want your data structured, compile your
protobuf into code in potentially many languages, and then read and write
your structured data to and from different data streams. Protocol buffers are
good for communicating between two systems (such as microservices), which
is why Google used protobuf when building gRPC to develop a high-perfor-
mance remote procedure call (RPC) framework.

If you haven’t worked with protobuf before, you may have some of the same
concerns I had—that protobuf seems like a lot of extra work. I promise you
that, after working with it in this chapter and the rest of the book, you'll see

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

°6

that it’s really not so bad. It offers many advantages over JSON, and it'll end
up saving you a lot of work.

Here’s a quick example that shows what protocol buffers look like and how
they work. Imagine you work at Twitter and one of the object types you work
with are Tweets. Tweets, at the very least, comprise the author’s message. If
you defined this in protobuf, it would look like this:

StructureDataWithProtobuf/example.proto
syntax = "proto3";

package twitter;

message Tweet {
string message = 1;

}

You’d then compile this protobuf into code in the language of your choice.
For example, the protobuf compiler would take this protobuf and generate
the following Go code:

StructureDataWithProtobuf/example.pb.go
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: example.proto

package twitter

type Tweet struct {
Message string ‘protobuf:"bytes,1,opt, name=message,proto3"
json:"message, omitempty" "’
// Note: Protobuf generates internal fields and methods
// I haven't included for brevity.
}

But why not just write that Go code yourself? Why use protobuf instead? I'm
glad you asked.

Why Use Protocol Buffers?

Protobuf offers all kinds of useful features:

Consistent schemas
With protobuf, you encode your semantics once and use them across your
services to ensure a consistent data model throughout your whole system.
My colleagues and I built the infrastructures at my last two companies
on microservices, and we had a repo called “structs” that housed our
protobuf and their compiled code, which all our services depended on.
By doing this, we ensured that we didn’t send multiple, inconsistent
schemas to prod. Thanks to Go’s type checking, we could update our
structs dependency, run the tests that touched our data models, and the

« Click HERE to purchase this book now. discuss

https://media.pragprog.com/titles/tjgo/code/StructureDataWithProtobuf/example.proto
https://media.pragprog.com/titles/tjgo/code/StructureDataWithProtobuf/example.pb.go
http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

Why Use Protocol Buffers? ¢ 7

compiler and tests would tell us whether our code was consistent with
our schema.

Versioning for free
One of Google’s motivations for creating protobuf was to eliminate the
need for version checks and prevent ugly code like this:

StructureDataWithProtobuf/example.go
if (version == 3) {

} else if (version > 4) {
if (version == 5) {

}
}

Think of a protobuf message like a Go struct because when you compile
a message it turns into a struct. With protobuf, you number your fields
on your messages to ensure you maintain backward compatibility as you
roll out new features and changes to your protobuf. So it's easy to add
new fields, and intermediate servers that need not use the data can simply
parse it and pass through it without needing to know about all the fields.
Likewise with removing fields: you can ensure that deprecated fields are
no longer used by marking them as reserved; the compiler will then
complain if anyone tries to use to the deprecated fields.

Less boilerplate
The protobuf libraries handle encoding and decoding for you, which means
you don’t have to handwrite that code yourself.

Extensibility
The protobuf compiler supports extensions that can compile your protobuf
into code using your own compilation logic. For example, you might want
several structs to have a common method. With protobuf, you can write
a plugin to generate that method automatically.

Language agnosticism
Protobuf is implemented in many languages: since Protobuf version 3.0,
there’s support for Go, C++, Java, JavaScript, Python, Ruby, C#, Objective
C, and PHP, and third-party support for other languages. And you don’t
have to do any extra work to communicate between services written in
different languages. This is great for companies with various teams that
want to use different languages, or when your team wants to migrate to
another language.

« Click HERE to purchase this book now. discuss

https://media.pragprog.com/titles/tjgo/code/StructureDataWithProtobuf/example.go
http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

°8

Performance
Protobuf is highly performant, and has smaller payloads and serializes
up to six times faster than JSON.'

gRPC uses protocol buffers to define APIs and serialize messages; we'll use
gRPC to build our client and server.

Hopefully I've done a decent job of convincing you that protobuf is cool. But
the theory alone is boring! Let’s get you set up to create your own protobuf
and use it to build stuff.

Install the Protocol Buffer Compiler

The first thing we need to do to get you compiling protobuf is—you guessed
it—install the compiler. Go to the Protobuf release page on GitHub” and
download the relevant release for your computer. If youre on a Mac, for
instance, you’d download protoc-3.9.0-0sx-x86_64.zip. You can download and install
in your terminal like so:

$ wget https://github.com/protocolbuffers/protobuf/\
releases/download/v3.9.0/protoc-3.9.0-0sx-x86_64.zip
$ unzip protoc-3.9.0-0sx-x86 64.zip -d /usr/local/protobuf

Here’s what the layout and files in the extracted protobuf directory look like:

> tree /usr/local/protobuf
/usr/local/protobuf
—— bin

L— protoc
—— include

L— google

L— protobuf

—— any.proto
—— api.proto
—— compiler

L— plugin.proto
—— descriptor.proto
— duration.proto
— empty.proto
—— field mask.proto
—— source_context.proto
—— struct.proto
+— timestamp.proto
—— type.proto
—— wrappers.proto
— readme.txt

1. https://auth0.com/blog/beating-json-performance-with-protobuf

2. https://github.com/protocolbuffers/protobuf/releases

« Click HERE to purchase this book now. discuss

https://auth0.com/blog/beating-json-performance-with-protobuf
https://github.com/protocolbuffers/protobuf/releases
http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

Install the Protocol Buffer Compiler ¢ 9

As you can see, a protobuf installation consists of two directories. The bin
directory contains the compiler binary named protoc, and the include directories
contains a bunch of protobuf files that are like protobuf’s standard library.
A mistake I've seen many people make when setting up their systems to work
with protobuf is that they install the compiler binary without the include
protobuf files. But without those files you can’t compile successfully, so just
extract the whole release using the commands I just showed you and you’ll
be just dandy.

Now that you've got the compiler binary installed, make sure your shell can
find and run it. Add the binary to your PATH env var using your shell’s con-
figuration file. If you're using ZSH for instance, run something like the follow-
ing to update your configuration:

$ echo 'export PATH="$PATH:/usr/local/protobuf/bin""' >> ~/.zshenv

At this point the protobuf compiler is installed on your machine. To test the
installation, run protoc --version. If you don’t see any errors, you're ready to
handle the rest of this chapter. If you do see errors, don’t worry: few installa-
tion problems are unique. Google will show you the way.

With the compiler installed, you're ready to write and compile some protobuf.
Let’s get to it!

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

