
Functional

Design Patterns
Express.js

for

elegant, maintainable Node.js backends.
A step-by-step guide to building

POST /books HTTP/1.1
Content-Type: application/json
Content-Length: 292

{
 "author": "Jonathan Lee Martin",
 "category": "learn-by-building",
 "language": "JavaScript"
}

!íÈ�è¯ÏÈ�Á ��á¯¦È R�èè�ÝÈá ¥ÏÝ �þÚÝ�ááʧ»á

� áè�Úʋ�ÿʋáè�Ú ¦í¯�� èÏ �í¯Á�¯È¦ �Á�¦�Èèʢ Ç�¯Èè�¯È��Á� AÏ��ʧ»á
���¾�È�áʧ

By Jonathan Lee Martin

Copyright © 2019 by Jonathan Lee Martin

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the author prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, contact:

Jonathan Lee Martin
hello@jonathanleemartin.com
https://jonathanleemartin.com

“Node.js” and the Node.js logo are trademarks of Joyent, Inc.

Scripture quotations taken from the New American Standard Bible® (NASB).
Copyright © 1960, 1962, 1963, 1968, 1971, 1972, 1973, 1975, 1977, 1995 by The Lockman Foun-
dation. Used by permission. www.Lockman.org

¯¯¯

mailto:hello@jonathanleemartin.com
https://jonathanleemartin.com

+ÈèÝÏ�í�è¯ÏÈ

Learn the design patterns that transcend Express.js and recur throughout high-
quality production codebases.

You’ve built backends in another language for a decade. You’re a seasoned frontend
JavaScript developer. You’re a recent web bootcamp graduate. You’re searching for an
Express.js primer that isn’t another screencast or exhaustive reference guide.

If any of those personas describe you, and you want to:

• Learn the intuitions of developing elegant, maintainable backends.
• Learn without the distractions of every tangential tool in the ecosystem.
• Solidly grasp the motivation behind each concept as you build step-by-step.
• Expand your design palate with patterns that will transfer to other platforms.

This book is for you. The pedagogical approach of this book is aimed at transferring
design intuitions — motivated by real-world consulting experiences — in the fastest
way possible. That translates to a razor-focused topic scope and no contrived examples
to motivate tools you probably won’t use, or shouldn’t be using because they indicate
deeper “code smells.”

If you’re looking for an exhaustive Express reference guide, prefer to read passively, or
value books and video courses by their length, this book isn’t for you — unless you’re
looking for a handsome adornment for your bookshelf!

q¬ÿ �þÚÝ�ááʩ

Express is arguably the ubiquitous library for building Node backends. It is partly re-
sponsible for Node’s surge in popularity, and many other Node frameworks build on top
of Express. As of mid-2019, it is a dependency of 3.75 million codebases on Github alone.
So if you hop into a Node codebase, chances are Express is part of it.

Express 5 is in development, but because a sizable group of tech giants depend on the
API — directly or through a dependency — Express has essentially been on feature freeze
for some time and is unlikely to see substantial overhauls.

This book steers away from version peculiarities and clever utility methods in favor of
good design patterns. Thanks to these patterns, the backend we will build together has
been rewritten in two other Node.js backend libraries with minimal changes.

þ¯

þ¯¯ +ÈçÜÎ�ì�ç¯ÎÈ

Good design in an Express.js backend is good design anywhere. Some design patterns
may be more idiomatic in one language than another, but the patterns you learn to de-
velop Node backends will outlive Express and influence your design approaches in unre-
lated platforms.

�ÚÚÝÏ��¬

There are countless books out there on backend design, so what makes this one differ-
ent? In a word, the approach.

Many well-meaning books and courses are built on a more-is-better ethos: a single step-
by-step course about Express is crammed with tangential topics like ES2015 JavaScript,
databases and React. When the teaching approach and learning outcomes become sec-
ondary to the topic list, the result is a grab bag of goodies that entertains the developer
rather than educates.

As a globetrotting educator, author and international speaker with a passion for craft,
I’ve guided hundreds of developers — from career switchers to senior developers at For-
tune 100 companies — through their journey into web development.

Both in the workplace and in the classroom, I’ve watched the entertainment model of
learning cripple developers. So over the last six years of teaching one to sixteen week
bootcamps, I’ve developed a pedagogical approach for developers at all skill levels.

Pedagogy — the method and practice of teaching — asks the essential question, what
does it mean to teach well? My approach to vocational teaching is based on a few axioms:

• Teach and apply one concept at a time to minimize cognitive load.
• Focus on contextual learning.
• Leverage the ability to generalize concepts and apply in new contexts.
• Emphasize transmutable concepts.
• Dispel magic by building magic from scratch.
• Encourage fearless curiosity that dispels magic.
• Facilitate self-discovery, then follow with reinforcement.
• Engender love for the abstract from the concrete — not the reverse.
• Transfer intuition — not concepts — as quickly as possible.
• Quality is inversely proportional to length. Conciseness is kindness in practice.

Like a well-designed app, good pedagogy becomes a transparent part of the learning
process by removing obstacles to learning — including itself!

`ÏÚ¯�á

This course focuses on best practice, conventional backend design for pure backend
APIs. It is not exhaustive, comprehensive or targeted at advanced Express developers
who are trying to scale huge legacy backends.

RÜ�Ü�Ûì¯à¯ç�à þ¯¯¯

As we build a full-featured backend together, expect to work through:

• HTTP from scratch
• Request-response (life)cycle
• Express.js features that appear in high-quality codebases
• Testing backend routes with Insomnia
• Conventional headers for pure APIs
• Router design pattern
• Decoupling backend code
• Functional-style design patterns
• Currying and partially applied functions
• Dynamic segments
• Working with bodies
• Function objects
• Middleware
• Global vs. route middleware
• Middleware factories
• Common middleware libraries
• Authentication vs. authorization
• Password authentication
• Authentication with JSON Web Tokens
• Authorization design patterns

Because of this book’s razor-focused approach, it intentionally omits:

• ES2015–ES2017 JavaScript
• RESTful conventions
• Databases
• Node essentials
• Frontend
• Cookies and sessions
• Passport.js
• Templating
• Niche Express methods, especially if they are symptomatic of design flaws.

Instead, it is this book’s intention to equip developers — who already have a thorough
applied knowledge of JavaScript, some light Node experience, and who have preferably
built a backend before in any language or framework — with design insights.

RÝ�Ý�Üí¯á¯è�á

It is recommended that you have a strong foundation in JavaScript, preferably through
hands-on product development. If your JavaScript experience is academic or limited to
occasional hacking, the learning outcomes of this book may not be valuable.

Specifically, it is strongly recommended that:

• You have solid hands-on experience in JavaScript and Node.js.

þ¯ø +ÈçÜÎ�ì�ç¯ÎÈ

• You are immensely comfortable with async programming in JavaScript with call-
backs, async functions and Promises.

• You have ES2015 (previously called ES6) under your belt, especially destructuring
syntax and arrow functions.

• You have an experiential understanding of HTTP, though a rigorous understanding
is unnecessary.

Some things are not required to get the most out of this book! You don’t need prior back-
end experience. If you understand how servers and clients interact, experience from
either side of the equation is sufficient.

:�èʘá "�è Yè�Ýè��

Throughout this book, we’ll be building a full-featured Express backend together called
Pony Express. Starting from an empty directory, we will intentionally bump into code-
base growing pains to motivate functional design patterns and Express features.

But first, in the next chapter we’ll detour from Node altogether and demystify the core
abstraction of the web: HTTP.

	Acknowledgments
	Technical Reviewers

	Introduction
	Why Express?
	Approach
	Topics
	Prerequisites
	Let's Get Started

	I Express Essentials
	How Servers Talk
	HTTP: The Core Abstraction of the Web
	Installing telnet
	On Linux
	On macOS

	An HTTP Conversation with telnet
	Talking to a Backend API
	Making Requests with Insomnia
	Go Further

	Responding to Requests
	Simple Servers with the http Module
	Speaking HTTP over Telnet
	Responding to Different Routes
	Hello, Express
	Express Shorthands
	Go Further
	Multiple Response Types

	Express Router
	Refactoring with the Router Pattern
	Express Router
	Functions with Methods
	Routes with Dynamic Segments
	Using Multiple Routers
	Extracting Routers into Files
	Go Further
	Routing on the Accept Header

	Working with Request Bodies
	Request Body Lifecycle
	Reading Request Bodies
	Finishing Up the Create Endpoint
	Update and Delete
	Express .route() Method
	Go Further

	II Middleware
	Middleware
	Cross Cutting with Middleware
	Passing Data to Routes
	Route Middleware
	Middleware is Everywhere
	Go Further
	Error Handling Middleware

	Common Middleware
	Logging with Morgan
	Body Parser
	Middleware Factories
	Compression
	Serving a Frontend
	File Uploads with Multer
	Serving Static Files with a Path Prefix
	Accepting Multiple Body Types
	Go Further
	URL Encoded Bodies
	PATCH Things Up
	MIME Types

	III Authentication & Authorization
	Basic Authentication
	Authorization Header
	Handling Authentication with Middleware
	Graceful Global Middleware
	Requiring Authentication
	Creating a Middleware Factory
	Currying and Middleware Factories
	Go Further
	Hashing Passwords

	Authentication with JSON Web Tokens
	Proof of Verification
	JSON Web Tokens
	Issuing Tokens
	Signing Tokens
	Dissecting a Token
	Accepting JSON Web Tokens
	Dealing with Invalid Tokens
	Decoupling with Middleware Factories
	Go Further
	Environment Variables

	Authorization Design Patterns
	Adding Authorization to a Route
	Authorization Design Flaws
	Extracting Authorization to Middleware
	Policies and Enforcers
	Simplifying Policies
	Enforcing Policies with Exceptions
	Sustainable Security
	Go Further
	Enforce All the Things
	Private Attachments

	Index

