
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Introducing Horizontal Sharding
If this is the first time that you have read about sharding, you may be
wondering how it works in practice. What is the exact strategy used to define
the data held by each one of those shards? How can you implement sharding
without utterly breaking the functionality of your application?

There is a very common scenario in modern web applications, particularly in
B2B services: datasets in which the whole data “hangs” on the account. For
example, when a company opens an account in a cloud-based SaaS to manage
its human resources, it doesn’t expect its data to interact in any way with
the data of other accounts. In fact, it would create a huge issue if there was
any kind of data leak between accounts! In products like the one we are
commenting on—an HR management service—the vast majority of the data
can be easily partitioned with no feature loss. In this case, it would be
acceptable from a product perspective—even somehow ideal—if each account
had its own totally isolated database.

Let’s take our movie business as an example. Fortunately, the data model
you have in your hands is perfect for applying some sharding. The key you
want to use to generate the shards is store_id. Still, so far, none of the features
in the application seem to require the usage of sharding…until now. Our new
requirement has arrived—we are going to introduce auditing in our application.
Every time something relevant to the store occurs, we will create an object
and store it. This is how it could look in the figure on page 4.

What you have just seen described is an ideal sharding scenario. It is so ideal
that it rarely happens in reality, even in use cases in which data sharding is
commonly used. The thing is, even if all the data introduced by the customer
can be completely sharded, there will be data that is shared. The most common
example is that all instances of the application will probably need to connect
to a complete accounts table that at least allows them to know the shard
assigned to a given account, but there are many others. Fortunately, this
kind of “global” data tends not to suffer volume issues in the same way that
customer-associated data does, and therefore you can replicate it across all
shards without causing scalability problems.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

Audits
id store_id

1 2

2 43

3 5

4 2

7 10

8 12

9 15

Shard 1 Shard 2 Shard 3

Audits
id store_id

8 12

9 15

Audits
id store_id

2 43

7 10

Audits
id store_id

1 2

3 5

4 2

Shard 1 Shard 2 Shard 3

Audits
id store_id

1 2

2 43

3 5

4 2

7 10

8 12

9 15

Stores
id shard_id

2 3

5 3

10 2

12 1

15 1

43 2

Audits
id store_id

8 12

9 15

Audits
id store_id

2 43

7 10

Audits
id store_id

1 2

3 5

4 2

Stores
id shard_id

2 3

5 3

10 2

12 1

15 1

43 2

Stores
id shard_id

2 3

5 3

10 2

12 1

15 1

43 2

Stores
id shard_id

2 3

5 3

10 2

12 1

15 1

43 2

After this explanation, you may think that sharding is an obvious choice,
almost something that you should implement preemptively in all your appli-
cations. That’s not the case. The reality of the tech world is not the massive
scale that we are discussing here; it’s significantly smaller volumes of data.
Moreover, sharding notably increases complexity, and complexity is the silent
killer of tech businesses. Maybe that’s why Rails didn’t support sharding out
of the box until fairly recently.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

Vertical Sharding

Yes, the term "horizontal sharding" implies the existence of "vertical sharding." While
vertical sharding is less useful for scalability purposes, it’s still a technique that
deserves to be explained.

The difference between horizontal and vertical sharding is the following: as we have
seen, in horizontal sharding, we "break" the table by creating multiple tables with
the same schema as the original one and dividing the rows between them. In other
words, the rows are divided, but the columns stay the same. Vertical sharding is the
other way around: we break the original table into multiple tables that have a part of
the original schema while maintaining all the rows in all the tables. This can make
sense, particularly in tables with many columns.

For example, take the films‘ table. In our application, it’s still quite small. It only
has five columns. However, imagine the following situation: in the future, we have
implemented multilanguage capability, introducing two columns per language in the
films‘ table: one holding the title (en_title‘, es_title, fr_title and so on) and another holding
the plot (en_plot, es_plot, fr_plot...). Eventually, as more languages are introduced to the
application, our ‘films‘ table holds over 100 columns, the majority of those related to
maintaining data on over 40 languages. Applying vertical sharding, we could create
new tables to keep the data in each language (en_film_data, es_film_data, fr_film_data): each
of those tables would require only three columns (‘title‘, ‘plot‘, and film_id to maintain
the association with the original record on ‘films‘). With this, we can reduce the size
of the ‘films‘ table without reducing the amount of rows.

• Click HERE to purchase this book now. discuss

• 5

http://pragprog.com/titles/cprpo
http://forums.pragprog.com/forums/cprpo

